

December 16, 2023

U-3ARC TRAINING WEBINAR N°28 SELECTION OF COMPONENTS OF A REFRIGERATING CIRCUIT

Hammadi FERJANI

Selecting an evaporator Selection of an air condenser refrigeration unit Selecting a compressor Selecting an air condenser

Hammadi FERJANI

□ What refrigerant do we use?

- What is the refrigeration power that this exchanger must absorb?
- What are the nominal evaporation and fluid temperatures to be cooled?
- What should we cool? Clear water, brine, fruit juice, air?
- What should we keep in the room? Fruit, cheese, packaged products?
- □ Is the atmosphere aggressive?
 - ❑ What are the dimensions of the room?
- □ Are there any restrictions on fan noise?
- Do the staff work permanently in the refrigerated room?

Recommended temperature difference for air evaporators

	Mode de circulation de l'air	CATEGORIE 1	CATEGORIE 2	CATEGORIE 3	CATEGORIE 4
Températures	Pulsé	3 à 5°C	5 à 7°C	7 à 9°C	9 à 12°C
POSITIVES	Naturel	8 à 10°C	10 à 12°C	12 à 15°C	15 à 20°C
	Mode de circulation de l'air		ngelés ou à I EMBALLES		ngelés ou à MBALLES
Températures NEGATIVES	Pulsé	5 à	6°C	7 à	8°C

Categorize foods according to their relative humidity

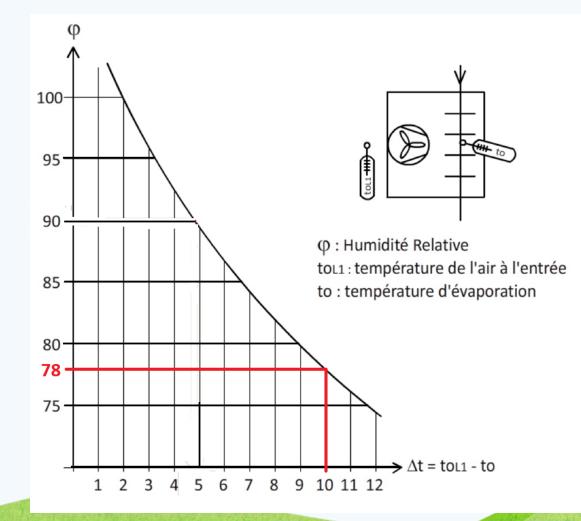
CATEGORIE 1 TRES HAUTES humidités relatives (environ 90 à 95 %)

✓ Certains fromages
✓ Certains légumes (en particulier : épinards laitues choux de Bruxelles rutabagas)
✓ Poissons frais
✓ Pâtes à pain
✓ Beurre non emballé
✓ Certains fruits en stockage de longue durée

CATEGORIE 2 HAUTES humidités relatives (environ 85 à90 %)

✓ Viandes fraîches conditionnées ou en carcasses
✓ Lapins
✓ Jambon frais
✓ Longes fraîches
✓ Huîtres
✓ Certains fruits (en particulier pommes poires groseilles vertes) en stockage moyenne durée
✓ Agrumes
✓ La plupart des légumes (betteraves rouge carottes choux haricots verts)
✓ Fleurs coupées
✓ Œufs en caisses à claire
✓ Bière en fûts de bois
✓ Certains fromages

CATEGORIE 3 MOYENNES humidités relatives (environ 80 à 85 %)


✓ Denrées diverses (restaurants)
 ✓ Poissons sans glace
 ✓ Viande en quartiers
 ✓ Oignons
 ✓ Volailles fraîches
 ✓ Fruits ayant une peau relativement épaisse (coing, melon)

CATEGORIE 4 FAIBLES humidités relatives (environ 75 à 80 %)

✓ Viandes
✓ Fruits
✓ Légumes
✓ Poissons séchés
✓ Lait
✓ Crèmes
✓ Conserves
✓ Confitures
✓ Confitures
✓ Boissons en bouteilles ou en fûts métalliques
✓ Laitages
Et en général tous les produits protégés par une enveloppe étanche à l'air

Choice of temperature difference between refrigerant and the temperature of the medium to be cooled

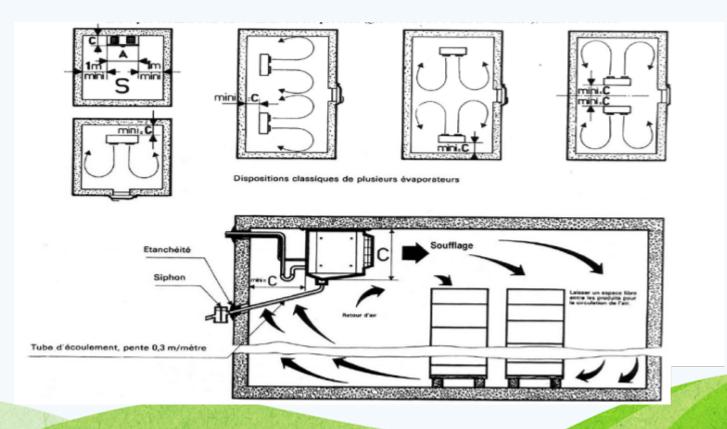
Choice of fin spacing

If we return to the previous table we can give an order of magnitude of the spacing to be adopted for normal storage temperatures ($\theta > 0^{\circ}$ C). Category 1 (90 to 95% relative humidity) 10 to 12 mm Category 2 (85 to 90% relative humidity) 7 to 10 mm Category 3 (80 to 85% relative humidity) 5.5 to 6.5 mm Category 4 (75 to 80% relative humidity) 4.5 to 5.5 mm

Used materials

Cas	Général	Ambiances agressives ou marines	Autres
Matériaux	Tubes cuivre revêtu d'alu + ailettes alu	Tube et ailettes en acier inoxydables, ou tube lisse inox	Voir documents constructeur
Remarques	Grand standard de fabrication	Selon le budget du client. Les plus sauvent pour l'industrie agroalimentaires (fromagerie, viande/salaison)	

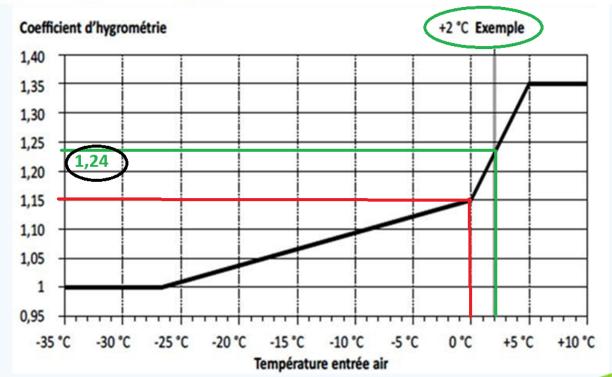
Air flow speed and jet lift


Speed: Greater than 2 m/s at evaporator blowing **Jet lift:** Depending on the volume of the room and available space, the air jet must be able to reach all areas of the room

Evaporator type

Small volume: Ceiling evaporator (single flow or double flow), wall mounted
Medium volume: Ceiling or cubic evaporator
Large volume: Cubic or nozzle evaporator
Work rooms, maintaining reception/dispatch dock temperature:
Double flow evaporator

Implementation (Cubic evaporators)


- Several arrangements see diagram
- Avoid installing the evaporator above a door (rapid freezing)
- Ensure that the entire room is irrigated by the air flow
- Do not blow air directly on the products (freeze and temperature difference in the room) but above

Selection coefficient

Conditions standard

Conditions standard	tA1	te	DT1
	Temp. entrée air	Temp. évaporation	standard
SC 1	+10 °C	0.0	10
SC 1 SC 2	0°C	-8°C	8
SC 3	-18 °C	-25 C	7
SC 4	-25 °C	-31 °C	6
SC 5	-34 °C	-40 °C	6

Coefficient de correction de DT1

Pour des fluides à faible glide (inférieur à 1K), ou sans glide, il est admis que la puissance est directement proportionnelle à la différence entre la température d'entrée d'air et la température d'évaporation (DT1) c'est à dire : Puissance souhaitée = Puissance nominale x DT1 souhaité/DT1 standard.

Coefficient fluide frigorigène

Fluide frigorigène	R 404A/R 507	R 22	R 134a		
SC 1	1	0,95	0,93		
SC 1 SC 2	1	0,95	0,91		
SC 3	1	0,95	0,85		
SC 4	1	0,95			

Coefficient matériau de l'ailette

Ailette aluminium	Ailette aluminium protégé	Ailette cuivre
1	0,97	1,03

Selection example

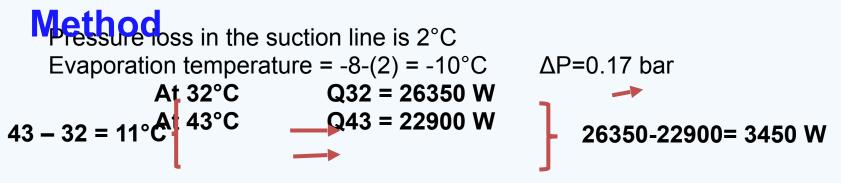
Desired cooling power: Q0 = 24 KW Air inlet temperature: $\theta a = +2^{\circ}C$ Evaporation temperature: $\theta 0 = -8^{\circ}C$ Refrigerant: R134a $\Delta\theta$ Total = ($\theta a - \theta 0$) = 2 - (-8) = 10 k To select under standard conditions, the following correction coefficients should be applied: Hygrometry coefficient: 1.15 / 1.24 = 0.927 Correction coefficient of $\Delta\theta$: 8 / 10 = 0.8 Refrigerant coefficient: 1 / 0.91 = 1.098

Expressed under the given standard conditions, the desired power of 24 KW becomes: 24x0.927x 0.8x1.098 = 19.54 KW

The 3C-A4364R type evaporator meets our needs

R404A C	02 W		tA	1	3C-A	R	+E1	K/E1U) +6	2K		+E3		
				+10			2		-5	-10				1
3C-A R											_		0	4 m
		3C-AR	3444	3445	4263	3455	3545	4264	4265	4266	4364	4366	4396	446
uissance R404A (1)	DT1 = 8K - SC 2	kW	9,84	10,92	12,16	12,46	13,70	14,71	16,65	18,40	22,27	27,22	33,18	35,8
PUtterson		kW	10,29	11,10	12,72	12,75	13,58	15,40	17,42	18,89	\sim	27,97	34,79	37,7
Puissance W (7)	DT1 = 8K	kW	8,80	10,57	8,09	12,32	12,87	12,44	14,63	17,25	16,56	23,91	28,44	29,9
Surface		m ²	32,8	41,0	27,6	51,2	51,2	36,9	46,1	55,3	55,3	82,9	110,6	110/
Volume circuits		dm ³	5,2	6,5	4,4	8,1	8,1	5,8	7,3	8,7	8,7	13,1	17,4	17,4
Débit d'air		m³/ħ	5460	5070	11740	5700	6340	10990	10310	9700	16480	14560	16780	1941
	Projection d'air (2)	m	22	21	32	23	24	31	30	29	35	33	35	36
	Nb x Ø	mm	4x300	4x300	2x450	4x300	5x300	2x450	2x450	2x450	3x450	3x450	3x450	4x45
Ventilateur		W max	288	288		288	360							
1320 tr/min.	230 V/1/50-60 Hz	A max (3)	1,28	1,28		1,28	1,60							
	400 V/3/50 Hz	W max	1.0		1000			1000	1000	1000	1500	1500	1500	2000
	400 W3/50 Hz	A max (3)			2	•	•	2	2	2	3	3	3	4
		Nb	3	3	3	3	3	3	3	3	3	3	3	3
Dégivrage		W Total	3450	3450	2160	4320	4320	2160	2160	2160	3240	3240	3960	3960
électrique E1K (4)	230 V/1/50 Hz	A Total	1.0		9,4			9,4	9,4	9,4				
	400 V/3/50 Hz	A Total	5,0	5,0		6,2	6,2				4,7	4,7	5,7	5,7
Polds net		kg	54	57	58	65	70	62	65	69	84	95	114	123
	Longueur	mm	1954	1954	1598	2354	2354	1598	1598	1598	2198	2198	2798	279
Dimensions	Largeur	mm	484	484	610	484	484	610	610	610	610	610	610	610
	Hauteur	mm	428	428	635	428	428	635	635	635	635	635	635	635
Raccordements (5)	Entrée	0 00	5/8*	7/8*	7/8*	7/8"	7/8*	1"1/8	1"1/8	1"1/8	1*1/8	1*3/8	1"3/8	1'3/
R404A	Sortie	0 00	7/8*	1"1/8	1'3/8	1"3/8	1"3/8	1'3/8	1"3/8	1"3/8	1'5/8	2'1/8	2'1/8	2"1/8

(1) Conditions standard (Eurovent): SC2 / 0°C (temp. entrée air) / -8°C (temp. évaporation) / DT1 = 8K (2) Vitesse d'air résiduelle : 0,25 m/s.


(3) Réglage des protections contre les surcharges. Pour des températures d'air "ti" autres que +20 °C, multiplier les intensités par le rapport 293/273 + "ti") afte d'oblank le value e senervirentica da l'infancità anske mina an famesicab sa da la chambra

To select a refrigeration unit from a manufacturer, you must check several points

- □ What type of fluid do we want to use?
- ❑ What type of condenser used: air or water
- □ What is the cooling capacity
- What are the nominal outdoor ambient and evaporation temperatures?
- □ What are overheating, undercooling,

Selection example

- Desired cooling power: Q0 = 24 KW
- Ambient outside air temperature: θa = + 38°C
- Evaporation temperature: θ0 = 8°C
- Refrigerant: R134a
- Overheating: 20K

3450 / 11 = 313,6 ≈ 314 W Desired temperature is 38°C From 43 to 38°C we have 5°C so 5 x 314 = 1570 W 22900 + 1570 = 24470 W

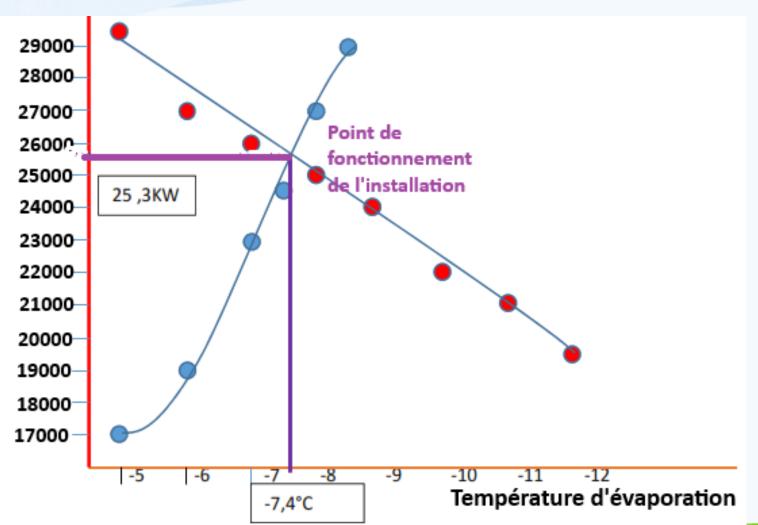
The suitable refrigeration unit is type LH135/4G-20.2Y For suction superheat of 20 K

Leistungswerte

bezogen auf 20 °C Sauggastemperatur mit Flüssigkeits-Unterkühlung, 50 Hz Performance data based on 20 °C suction gas temperature with liquid subcooling, 50 Hz

Données de puissance

se référant une température de gaz aspiré de 20 °C avec sous-refroidissement, 50 Hz


R134a

Typ Umgeb Temp. Type Ambier temp.			Kälteleistu Cooling ca Puissance	•	Qo	[Watt]	Por	stungsaufn wer consum issance abs	ption	Pe®	[kW]
Type Temp. ambiar	nte		Verdampfu	ingstemperat	ur °C	Evapo	ration tempe	rature °C	Tempé	rature d'evap	oration °
°C	Я	+	10	5	0	-5	(-10)	-15	-20	-25	-30
	27	Q P	27750 7,59	23800 6.83	20150 6.14	16830 5.49	13810 4,90	11120 4.33	8770 3,79	6720 3.29	4970 2.82
LH104/4TCS-8.2Y	32	Q	26000 7,98	22300 7,16	18870 6,41	15720	12870 5.05	10320 4,42	8080 3.83	6130 3.27	4460
	43	QP	22100 8.64	18960	15990	13260 6.07	10770	8540 4.55	6570 3.84	4840 3.17	3350 2.53
	27	Q P	46900 10.93	39600 9,69	33000 8.61	27100 7.65	21900 6.78	17360 5.97	13440 5.21	10120	7360 3,74
LH135/4J-13.2Y	32	Q P	44300 11,51	37400 10,20	31150 9.04	25550 8,01	20600 7,07	16280 6,20	12560 5.37	9410 4.56	6790 3,77
2	43	Q P	38900 12,59	32800 11,12	27250 9,82	22250 8,63	17870 7,55	14020 6,54	10710 5,59	7910 4,66	5580 3,75
	27	Q P	52700 13,05	44700 11,46	37400 10,11	30800 8,94	25000 7,91	19900 6,97	15480 6,09	11700 5,25	8540 4,43
LH135/4H-15.2Y	32	Q P	49850 13,70	42250 12,02	35300 10,58	29050 9,34	23500 8,23	18640 7,21	14430 6,26	10840 5,35	7830 4,44
0	43	Q P	43850 14,93	37050 13,07	30850 11,45	25300 10,03	20350 8,76	16020 7,59	12260 6,50	9080 5,44	6420 4,39
	27	Q P	58100 15,79	49500 13,95	41550 12,38	34400 11,00	28000 9,75	22350 8,59	17460 7,47	13260 6,38	9720 5,29
LH135/4G-20.2Y	32	Q P	55000 16,50	46800 14,53	39250 12,83	32450 11,34	26350 10,00	20950 8,76	16310 7,58	12310 6,43	8950 5,30
	43	Q P	48400 17,92	41100 15,66	34400 13,70	28300 11,97	22900 10,41	18100 8,99	13940 7,66	10370 6,39	7390 5,17
	27	Q P	64100 17,77	54800 15,58	46200 13,68	38300 12,01	31200 10,53	24950 9,19	19460 7,95	14750 6,77	10780 5,63
LH135/6J-22.2Y	32	Q P	60600 18,46	51800 16,20	43600 14,22	36100 12,47	29400 10,91	23400 9,48	18190 8,15	13720 6,89	9940 5,67
U	43	Q P	53100 19,74	45350 17,30	38100 15,15	31500 13,23	25500 11,49	20150 9,90	15520 8,41	11520 6,99	8160 5,60

Working point

Puissance frigorifique

To select a compressor from a manufacturer, you must check several

What type of fluid do we want to use?

What type of compressor do we choose: open, hermetic, piston, screw...

What is the cooling capacity, or the displacement

- required? Is it necessary to provide a power reduction system?
- **What are the nominal condensation and evaporation** temperatures
- **What are overheating, undercooling**

Based on this data, you must select your compressor and check the cooling power actually delivered under the conditions of use. Indeed, the power indicated on the compressor performance tables is given for a fixed SR and SC imposed by the manufacturer, and it is a gross refrigerating power.

points:

Let's take the example of the bedroom we saw previously. We set the following conditions:

Evaporation temperature: T0 = -8°C
 Condensing temperature: Tk = 53°C
 Compressor suction superheat: SC = 20 K
 Subcooling of the liquid before expansion: SR = 0 K
 Neglected heat inputs and losses in pipes (no heating or cooling of the fluid)
 Negligible pressure losses in the pipes.

□Isentropic compression (simplifying but false hypothesis).

Selection example

Discus - R134a

50Hz

	Compressor Compresseur		Cond Temp					<	Tempe	rating T érature (mpfung:	d'évapo	oration	°C					
	Verdichter		°C	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5	7	10	12,5
	D4DH-250X	Q	30 40 50							14,20 11,70	18,50 15,60	23,60 20,20	29,80 25,70	37,50 33,00	46,00 40,00	49,50 43,50	55,50 48,50	61,00 53,50
		Ρ	30 40 50							6,90 7,35	7,75 8,35	8,55 9,40	9,30 10,40	9,95 11,30	10,50 12,20	10,70 12,50	10,90 12,90	11,00 13,20
\langle	D4DJ-200X	Q	30 40 50							20,70 17,80 14,80	26,20 22,70 19,20	33,00 28,50 24,30	40,50 35,50 30,50	49,50 43,50 37,50	60,50 53,00 45,50	65,00 57,00 49,00	72,50 64,00 55,00	79,00 70,00 60,50
		Ρ	30 40 50							7,55 8,20 8,80	8,45 9,35 10,10	9,30 19,50 (11,40	10,10 11,60 12,80	10,80 12,60 14,10	11,40 13,50 15,40	11,60 13,90 15,90	11,80 14,30 16,60	12,00 14,70 17,10
	D4DJ-300X	Q	30 40 50							16,70 13,60	21,80 18,30	27,90 23,70	35,00 30,00	44,50 38,50	54,50 47,00	58,50 51,00	65,50 57,00	72,00 62,50
		Ρ	30 40 50							8,15 8,65	9,25 9,95	10,40 11,30	11,40 12,60	12,40 13,90	13,30 15,20	13,60 15,60	14,00 16,30	14,30 16,80

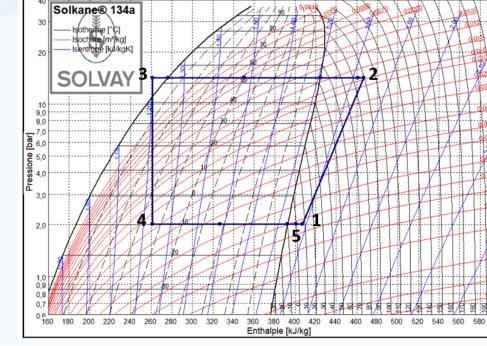
The D4DJ-200X compressor can satisfy the desired

power

The selection is made from manufacturer catalogs which contain tables giving the cooling capacity according to the evaporation and condensation temperatures for each fluid. You must choose the compressor whose advertised cooling power is immediately greater than the power required. Please note, the powers announced are often given for overheating and subcooling conditions that differ from actual conditions.

In this case, the manufacturer's power must be corrected by calculation in order to obtain the real power.

The calculation is as follows:
$$\Phi_{OR} = \Phi_{OC} \cdot \frac{v''_{1C} \cdot (h_{1R} - h_{4R})}{v''_{1R} \cdot (h_{1C} - h_{4C})}$$


With : F0R = real cooling capacity F0C = cooling capacity announced by the manufacturer v"1 = mass volume at suction h1 = enthalpy at the evaporator outlet h4 = enthalpy at the evaporator inlet

(index C: manufacturer's conditions, index R: real conditions)

Trace the cycle at operating conditions.

600

Point	P bar	T °C	V dm3/Kg	H KJ/Kg	S KJ/Kg K
1	2	7	107.73	406.97	1.786
2	14.2	89.56	17.58	466.66	1.828
3	14.2	43	0.88	261	1.204
4	2	-10	36.38	261	1.233
5	2	0.00	104.4	401	1.765

Calculation of swept volume

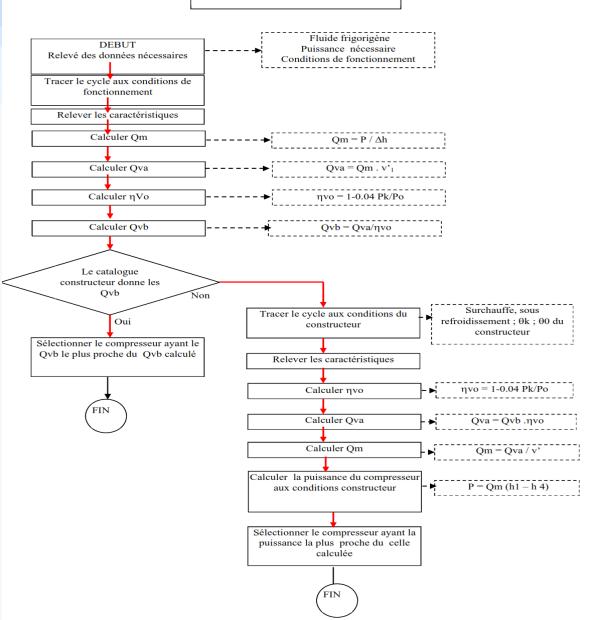
Determine the mass flow rate of refrigerant (Kg/s)

P = Qm x hQm = p / h5 - h4 en Kg/s Determine the hourly volume at the compressor suction: Qva (m3 /h) = Qm . v'1v'1 = mass volume of vapors at point 1 (m3/kg)Selecting a compressor Determine the hourly swept volume Qvb (m3/h) A. Determination of volumetric efficiency $\eta v0 = 1 - 0.05 Pk/P0$ Pk = condensing pressure (absolute bar) P0 = suction pressure (absolute bar) B. Determination of the volume swept by the compressor pistons (m3/h) Qvb = Qva .nvo

Calculated swept volume is Qvb = 41.35 m3/h

Selection from catalog

MECHANICAL DATA - Standard


ELECTRICAL DATA

Compressor	Displacement	Number of cylinders	Length/Width	Height	Suction line	Discharge line	Oil Quantity (1)	Gross Weight	Max. Operat	ing Current (2)	Locked Rote	or Current (3)
	Volume balayé	Nb de cylindres	Longueur/Largeur	Hauteur	Tube d'aspiration	Tube refoulement	Quantité d'huile (1)	Poids brut	Intensité max. de	fonctionnement (2	Courant rot	or bloqué (3)
Compresseur Verdichter	Volumenstrom	Zylinderanzahl	Länge/Breite	Höhe	Saugleitungsanschluss	Druckleitungsanschluss	Ölmenge ⁽¹⁾	Gewicht brutto	Max. Betri	ebsstrom ⁽²⁾		Rotorstrom ⁽³⁾
verdichter		/	L/B	н	SL	DL			EWL	AWM	EWL	AWL
	@ 50 Hz, m ³ /h		mm	mm	" (inch)	" (inch)	I.	kg	Α	Α	Α	Α

"S" compressors / Compresseurs "S" / "S"-Verdichter

		-										
D2SC-65X	26.9	2	560/330	395	1 1/8	7/8	2.4	96	16.2	-	85.3	-
D2SK-650	31.2	2	560/330	395	1 1/8	7/8	2.4	97	15.7	-	85.3	-
D2SK-65X	31.2	2	560/330	395	1 1/8	7/8	2.4	97	16.4	-	85.3	-
D3SA-750	32.2	3	655/370	480	1 3/8	1 1/8	3.7	174	18.5	-	82.0	-
D3SA-75X	32.2	3	655/370	480	1 3/8	1 1/8	3.7	174	-	17.9	-	82.0
D3SC-750	38.0	3	655/370	480	1 3/8	1 1/8	3.7	174	-	17.0	-	82.0
D3SC-75X	38.0	3	655/370	480	1 3/8	1 1/8	3.7	174	-	18.7	-	82.0
D3SC-1000	38.0	3	655/370	480	1 3/8	1 1/8	3.7	174	22.8	-	106.0	-
D3SC-100X	38.0	3	655/370	480	1 3/8	1 1/8	3.7	174	-	21.6	-	106.0
D3SS-1000	49.9	3	680/370	480	1 3/8	1 1/8	3.7	178	-	24.2	-	109.0
D3SS-100X	49.9	3	680/370	480	1 3/8	1 1/8	3.7	178	-	26.0	-	109.0
D3SS-1500	49.9	3	680/370	480	1 3/8	1 5/8	3.7	177	31.1	-	125.0	-
D3SS-150X	49.9	3	680/370	480	1 5/8	1 1/8	3.7	177	-	30.2	-	125.0
D4SA-1000	58.0	4	650/485	495	1 5/8	1 1/8	4.5	191	-	20.6	-	105.0
D4SA-100X	56.0	4	650/485	495	1 5/8	1 1/8	4.5	191	-	20.9	-	105.0
D4SA-2000	56.0	4	650/485	495	1 5/8	1 1/8	3.6	199	-	31.6	-	175.0
D4SA-200X	56.0	4	650/485	495	1 5/8	1 1/8	3.6	199	-	31.6	-	175.0
D4SF-1000	56.0	4	650/485	495	1 5/8	1 1/8	4.5	194	-	23.8	-	105.0
D4SF-100X	56.0	4	680/485	495	1 5/8	1 1/8	4.5	194	-	27.1	-	105.0
D4SH-1500	70.8	4	670/490	495	1 5/8	1 1/8	3.6	197	-	27.1	-	156.0

RECAPITULATIF

Condenser selection

The selection of the condenser is made following the manufacturer's instructions. In general, the powers indicated correspond to specific conditions. They must then be multiplied by a certain number of corrective factors to obtain the real powers in our operating conditions.

Condenser selection $\Phi_{\rm K}$ = Φ_0 + $P_{\rm abs}$

To find out the power of the condenser, two methods exist: •Establishing an energy balance on the refrigeration machine: The evaporator and compressor absorb power. Starting from the principle that« nothing is lost, nothing is created, everything is transformed» (Lavoisier), this power is entirely rejected by the condenser (except for some losses, which are negligible). $\Phi_{\rm r} = \Phi_0 + P_{\rm obs}$

•Theoretical calculation: $\Phi_{k} = qm_{FF} \cdot (h_{2} - h_{3})$

> With : qmFF: refrigerant flow rate h2: enthalpy at the condenser inlet h3: enthalpy at the condenser outlet

selection:

The compressor characteristics provided by the manufacturer and corrected for our operating conditions are:

Pabs = 11.4 kW

The power required by the condenser is then:

 $\Phi_{\rm K} = 24,3 + 11,4 = 35,70 \, {\rm KW} \approx 36 \, {\rm KW}$

Coefficient P/Q0m

Compresseurs ouverts

Température d'évaporation			Températ	ure de condens	ation (°C)		
t _e (°c)	30	35	40	45	50	55	60
	1,36	1,41	1,44	*	*	*	*
-30	1,31	1,36	1,40	1,44	*	*	*
-35 -30 -25	1,27	1,32	1,36	1,41	1,45	*	×
-20	1,24	1,28	1,31	1,35	1,39	1,44	*
-15	1,20	1,24	1,27	1,31	1,35	1,39	1,44
-10	1,18	1,21	1,24	1,27	1,31	1,35	1,40
-5	1,15	1,18	1,21	1,24	1,27	1,31	1,36
0	1,13	1,15	1,18	1,21	1,24	1,27	1,31
+5	1,10	1,13	1,15	1,18	1,21	1,24	1,28
+10	1,08	1,11	1,13	1,15	1,17	1,21	1,24

Compresseurs refroidissement par gaz aspiration

Température d'évaporation			Températ	ure de condens	ation (°C)		
t _e (°c)	30	35	40	45	50	55	60
-40	1,64	1,69	1,76	1,86	2,03	*	*
-35	1,56	1,61	1,66	1,73	1,83	*	*
-30	1,48	1,53	1,57	1,62	1,69	*	*
-25	1,42	1,46	1,50	1,54	1,60	1,68	*
-20	1,37	1,40	1,44	1,48	1,53	1,60	*
.15	1,32	1,35	1,38	1,43	1,48	1,53	1,58
-10	1,28	1,31	1,34	1,37	1,42	1,46	1,52
5	1,23	1,26	1,29	1,33	1,37	1,41	1,45
0	1,20	1,22	1,25	1,28	1,32	1,36	1,39
+5	1,16	1,19	1,21	1,24	1,28	1,31	1,34
+10	1,13	1,15	1,18	1,21	1,23	1,26	1,29

* Hors limites d'utilisation d'un compresseur à un étage

Power correction factors

Coefficient d'altitude : C1

C1 = (1 - 0,000075 x H*) *H = Altitude en mètres au dessus du niveau de la mer

Coefficient de DT1 : C2

								\frown			
DT1	8	9	10	11	12	13	14	15	16	17	18
C2	0,53	0,60	0,67	0,73	0,80	0,87	0,93	1	1,07	1,13	1,20
								$\overline{}$			

Coefficient température ambiante t_{A.1} : C3

t _{1.1}	15	20	25	30	35	40	45	50
C3	1,03	1,02	1	0,98	0,96	0,94	0,92	0,91

Coefficient fluide frigorigène : C4

	$ \rightarrow $					
Fluide frigorigène	R134a	R22	R404A	R407A	R407C	R507
C4	0,93	0,96	1	0,83	0,87	1
	\sim					

Correction matériau ailette : C5

	\sim		
	Aluminiun	Aluminium protégé	Cuivre
C5		0,97	1,03
	\sim		

Selection method

'P' = Power at the condenser. In the absence of specific documents, we can determine **'P'** using one of the tables in the catalog, based on the **"Qom"** refrigerating power. To determine a model, we must reduce the conditions of application to the conditions of selection.

To do this, you must divide the desired power 'P' by the 5 coefficients below:

- C1 altitude coefficient
- •C2 coefficient of $\Delta \theta$
- C3 ambient temperature coefficient
- C4 refrigerant coefficient
- C5 fin material coefficient

According to the formula:

Select a model from the table corresponding to the chosen rotation speed and check that the sound level meets the required level

$$P_1 = \frac{P}{C1 \times C2 \times C3 \times C4 \times C5}$$

NIVEAUX SONORES

Niveau sonore LpA

La pression sonore Lp indiquée dans les tableaux de caractéristiques a été mesurée à 10 mètres en champ libre sur plan réfléchissant, en accord avec la norme EN 13487 (surface de référence parallélépipédique).

La relation entre pression sonore Lp et puissance sonore Lw est donnée par la formule suivante :

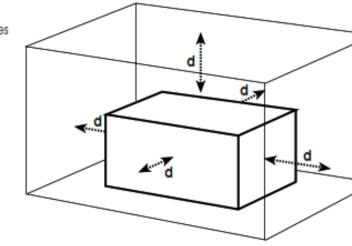
Si = surface parallélépipédique pour d = 10 m.

So = surface de référence 1 m².

Seul le spectre de puissance acoustique et la valeur LwA sont contractuels.

Pour une distance différente de 10 m, voir les facteurs de orrection ci-dessous.

Pour un calcul précis de la pression sonore sur site, prendre en


compte la puissance sonore de chaque ventilateur et sa position ainsi que les caractéristiques de l'environnement (directivité, réflexions, ...).

Correction pression sonore en fonction du nombre de ventilateurs

Ventilateur	Nb	1	2	3	4	5	ó	8	10	12
Correction	dB(A)	0	3	5	ó	7	8	9	10	11
			J							

Correction pression sonore en fonction de la distance

Distance m	5	ó	8	10	12	16	32	ó4	128
Correction dB(A)	+6	+4,5	+2	0	-1,5	-4	-10	-16	-22

Power correction

Correction factors

1,42

0,985

0,948

0,93

1

	Designation
	Desired power
цo	Altitude
ctic	Δθ
GO	Ambient temperature
sel	Refrigerant
	Fins
hser	Sound pressure
onder	From where: 36/1,42 Baseline sound level: Distance correction 6
\cup	\\/aill rate in the rea

FinsAluminium1Sound pressureÀ 5 m54 dB(A)From where: $36/1,42 \ge 0.985 \ge 1 \ge 0.948 \ge 0.93 \ge 1 \ge 29,19 \text{ KW} \approx 30 \text{ KW}$ Baseline sound level:54 - 6 = 48 dB(A)

Data

36 KW

200 m

15 K

38 °C

R134a

We will retain the model: WA37-08/12P Sound pressure at 10 m = 38 dB(A)

If the sound level is very different, find which model is suitable in the other tables

WA .. 08P/12P (750/500 tr/min.)

Modèles			WA	10	13	14	21	26	27	32	37	40	34	36	47	51
Puissance P	DT1 = 15K)w	08P (Δ)	8,8	10,6	11,3	17,7	21,2	22,6	26,5	31,8	33,9	34,5	36,2	51,8	54,2
R404A		N W	12P (Y)	7,5	8,8	9,1	15,0	17,6	18,3	22,5	26,3	27,4	25,9	26,6	38,8	40,0
Surface		m ²		17,50	26,25	35,00	35,00	52,50	70,00	52,50	78,75	105,00	71,60	95,40	107,40	143,10
Vol. tubes circ	cuits	dm ³		3,3	4,9	ó,4	ó,0	9,2	12,1	9,0	13,3	17,5	11,1	14,7	17,3	22,7
	Débit air	m ³ /h	08P (Δ)	3165	2880	2655	6330	5760	5310	9495	8640	7965	10200	9062	15300	13593
Ventilateur *	Debli uli	m•/n	12P (Y)	2446	2226	2033	4892	4452	4066	7338	6678	6099	6780	6060	10170	9090
vernitalear		No		ø 500	ø 500	ø 500	ø ^{2x} ø500	ø ^{2x} ø500	ø ^{2x} ø500	ø ^{3x} ø500	ø ^{3x}	ø ^{3x}	ø 630	ø 630	ø 630	ø 630
Classe énerge	ótique		08P (Δ)	В	В	В	В	В	В	В	В	В	С	С	С	С
Clusse energe	enque		12P (Y)	В	Α	Α	В	Α	Α	С	С	С	В	В	В	В
	har(1)		08P (Δ)	ó4	64	64	67	67	67	69	69	69	75	75	77	77
Acourtique	Lw (1)	dB(A)	12P (Y)	58	58	58	61	61	61	63	63	63	67	67	69	69
Acoustique	In (2)		08P (Δ)	33	33	33	36	36	36	38	38	38	44	44	46	46
	Lp (2)	dB(A)	12P (Y)	27	27	27	30	30	30	32	32	32	3ó	3ó	38	38
Poids net		kg		36	40	44	63	72	80	92	104	116	89	99	131	146
Circuits		Nb		-	-	-	4	ó	8	8	8	8	8	8	12	16

* Ø 630 mm - 400 V/3/50-60 Hz - Δ : 190 W max- 0,5 A max (3) - Y : 90 W max- 0,2 A max (3)

Niveau de puissance acoustique en dB(A), obtenu conformément à la norme NF EN 13487 (surface de référence parallélépipédique).
 Pression sonore en dB(A) mesurée à 10 m, surface de mesure parallélépipèdique, en champ libre sur plan réfléchissant, donnée à titre indicatif. Valeurs mesurées aux conditions nominales de fonctionnement batterie propre, sous tension nominale.
 Réglage des protections contre les surcharges.

Regulator selection

Selection parameters:

- □Regulator type
- □Evaporation temperature

 $\Box \Delta P$ upstream/downstream (condensation pressure – evaporation pressure)

□Cooling capacity

We will always choose a regulator whose cooling capacity is greater than that of the installation, but we must be careful not to pump too much. The selection is made following the manufacturer's instructions.

Example of manufacturer catalog

For conditions other than +38°C: +4°C and 1K of the subcooling fluid at the expansion valve inlet

Qn = Qo x Kt x K Δp

Calculation of correction factors:

KΔP = 0,72 (ΔP = PK – P0 = 21,4 – 5,3 = 16,1 bar)

By multiplying these factors by the actual cooling capacity, we obtain the nominal capacity of the regulator under the calculation conditions: $Qn = 24 \times 1,308 \times 0,72 = 22,6 \text{ kW}.$

The closest regulator is then the TCLE 550 MW, with a power of 23.6 kW. Port X22440B6B

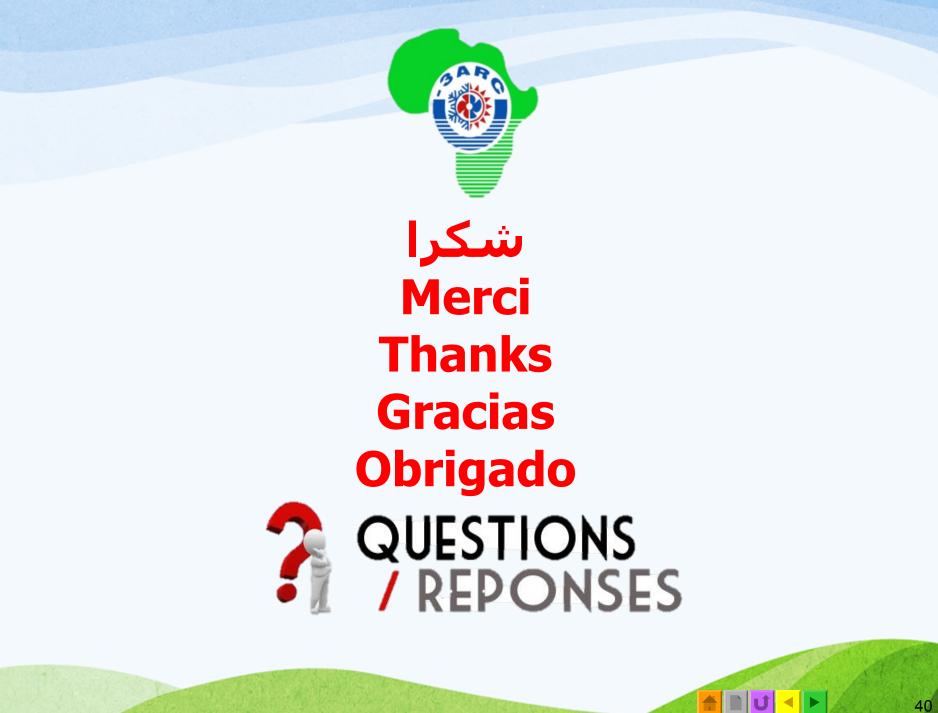

L,	Température du					Facteur de correction kt											
	fluide à l'entrée du détendeur		R13	34a							erature d'é						
	°C	+30	+25	+20	+15	+10	+5	0	-5	-10 -	8 -15	-20	-25	-30			
	+60	1,22	1,25	1,27	1,30	1,33	1,36	1,40	1,44	1,48	1,75	2,08	2,46	2,94			
	+55	1,14	1,16	1,18	1,21	1,23	1,26	1,29	1,33	1,36	1,60	1,90	2,25	2,68			
	+50	1,07	1,08	1,10	1,13	1,15	1,17	1,20	1,23	1,26	1,48	1,76	2,07	2,46			
	+45	1,00	1,02	1,04	1,06	1,08	1,10	1,12	1,15	1,17	1,38	1,63	1,92	2,28			
	+40	0,93	0,96	0,98	0,99	1,01	1,03	1,05	1,08	1,10	1,29	1,52	1,79	2,12			
	+35	0,90	0,91	0,92	0,94	0,96	0,97	0,99	1,01	1,03	1,21	1,43	1,68	1,99			
	+30	0,85	0,86	0,88	0,89	0,91	0,92	0,94	0,96	0,98	1,14	1,35	1,58	1,87			
	+25		0,82	0,83	0,85	0,86	0,87	0,89	0,91	0,92	1,08	1,27	1,49	1,76			
	+20			0,80	0,81	0,82	0,83	0,85	0,89	0,88	1,02	1,21	1,41	1,67			
	+15				0,77	0,78	0,79	0,81	0,82	0,84	0,97	1,15	1,34	1,58			
	+10					0,75	0,76	0,77	0,78	0,80	0,93	1,09	1,28	1,51			
	+5						0,73	0,74	0,75	0,76	0,89	1,04	1,22	1,44			
	0							0,71	0,72	0,73	0,85	1,00	1,17	1,37			
	-5								0,69	0,70	0,82	0,96	1,12	1,31			
	-10									0,68	0,79	0,92	1,07	1,26			
										Fac	teur de co	rrection	k∆p				
	∆p (bar)	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,5	7,0	7,5	8,0
	К∆р	3,50	2,48	2,02	1,75	1,57	1,43	1,32	1,24	1,17	1,11	1,06	1,01	0,97	0,94	0,90	0,88
	∆p (bar)	8,5	9,0	9,5	10,0	10,5	11,0	11,5	12,0	12,5	13,0	13,5	14,0	14,5	15,0	15,5	16,0
	К∆р	0,85	0,83	0,80	0,78	0,76	0,75	0,73	0,72	0,69	0,66	0,64	0,62	0,60	0,58	0,57	0,55

Tableau de sélection des mécanismes

		R134	4a	R	22	R404A	/R507	R4(07C	
Série	Ту	pe	Capacité nominale kW	Туре	Capacité nominale kW	Туре	Capacité nominale kW	Туре	Capacité nominale kW	Orifice
	251	WN	1,5	50HW	1,9	25 SW	1,3	50 NW	2,1	X 22440-B1B
	75 MW		2,9	100 HW	3,7	75 SW	2,6	100 NW	4,0	X 22440-B2B
	150	MW	6,1	200 HW	7,9	150 SW	5,6	200 NW	8,5	X 22440-B3B
\sim	200	MW	9,3	250 HW	11,9	200 SW	8,4	300 NW	12,9	X 22440-B3.5B
TCLE	250	MW	13,5	300 HW	17,3	250 SW	12,2	400 NW	18,7	X 22440-B4B
	350	MW	17.3	500 HW	22,2	400 SW	15,7	550 NW	24,0	X 22440-85B
	550 MW		23,6	750 HW	30,4	600 SW	21,5	750 NW	32,9	X 22440-B6B
	750 MW		32,0	1000 HW	41,1	850 SW	29,0	1000 NW	44,4	X 22440-B7B
	900	MW	37,2	1200 HW	47,8	1000 SW	33,8	1150 NW	51,7	X 22440-B8B
TIDE	111	WN	45	14 HW	58	12 SW	40	14 NW	62	X 11873-B4B
TJRE	13 /	WN	57	18 HW	74	14 SW	51	17 NW	80	X 11873-B5B
	16 1	WN	71	22 HW	91	18 SW	63	21 NW	99	X 9117-B6B
TERE	191	WN	81	26 HW	104	20 SW	72	25 NW	112	X 9117-B7B
TERE	25 1	WN	112	35 HW	143	27 SW	99	33 NW	155	X 9117-B8B
	31 /	WN	135	45 HW	174	34 SW	120	42 NW	188	X 9117-B9B
TIRE	45 M	WN	174	55 HW	223	47 SW	154	52 NW	241	X 9166-B10B
TUDE	55 N	WN	197	75 HW	253	61 SW	174	71 NW	273	X 9144-B11B
THRE	68 1	WN	236	100 HW	302	77 SW	209	94 NW	327	X 9144-B13B

