# **U-3ARC TRAINING WEBINAR #43**



# Hygiene, Safety & Environment in the Refrigeration/Air Conditioning sector

# TRAINER: Mr. Hammadi FERJANI

June 28, 2025

#### Table of Contents

Introduction Hygiene Safety Environment HSE IntegrationAfrican Perspective Tips and Recommendations



# Introduction



❑ Urban population growth in Africa will reach 500 million Africans in cities by 2050, threatening public health and the climate.

Demand for air conditioning will increase by 300% by 2040, leading to critical issues of pollution and energy waste.

### Key definitions of HSE



- □ S (Safety): Prevention of technical/operational risks (leaks, fires).
- □ E (Environment): Reduction of impacts (GHG, waste, energy).





#### Global issues



- 1. Inefficient Air Conditioners and Refrigerants with High Global Warming Potential (GWP)
- □ In 2018, approximately 35% of air conditioners sold in the 10 largest African countries (Algeria, Egypt, Ghana, Kenya, etc.) were low-efficiency models (EER <3.0 W/W).
- □ Each year, 650,000 non-compliant units are imported, often reclaimed or assembled locally with inefficient components.
- □ Approximately 40% of units still use R-22 refrigerant (GWP = 1,810 times that of  $CO_2$ ), while 47% of the market uses it, according to some sources.

#### Global issues



2. Massive GHG Leaks Due to HFCs and HCFCs

- □ Leaks in air conditioning systems release HCFCs/HFCs, some of which, like R-410A, have a GWP of 2088×CO<sub>2</sub> and an atmospheric lifetime of approximately 30 years.
- □ The massive use of such refrigerants contributes to approximately 2% of global warming, through their direct or indirect release.

#### Global issues



3. Discarded HVACR Equipment and Electronic Waste

- □ The import of non-compliant used appliances contributes to a waste stream of at least 250,000 tons per year, a large proportion of which are refrigerators and air conditioners.
- □ Informal processing of this waste releases refrigerants, heavy metals, and toxic compounds that are harmful to the air, soil, and water.

## **Definition and health risks**

- Biofilms in evaporators → Listeria contamination.
- Hygiene
- □ Cooling towers → Legionella (mortality rate: 10-15%).
- □ HVAC ducts  $\rightarrow$  Allergies (20% of Europeans affected).



#### Critical areas



| Critical zone                 | Associated risks                                      |
|-------------------------------|-------------------------------------------------------|
| Evaporators & coils           | Biofilms, molds, legionella                           |
| Air filters / HVAC ducts      | Dust accumulation $\rightarrow$ bacteria/aerosols     |
| Floors & room joints          | Contamination by organic residues/moisture            |
| Stagnant condensates          | Microbial proliferation (pseudomonas, legionella)     |
| Surfaces in contact with food | Chemical or microbial transfer (e.g. cleaning agents) |
| Chemical storage points       | Risks of cross-contamination (corrosion, vapors)      |

#### Control methods

Hygiene



| Critical zone                | Recommended actions                    | Control methods                                       |
|------------------------------|----------------------------------------|-------------------------------------------------------|
| Evaporators / Coils          | Monthly cleaning/<br>disinfection      | Visual inspection, microbiological analysis (surface) |
| Air filters & HVAC ducts     | Filter replacement / regular cleaning  | Schedule monitoring, filter status check              |
| Condensates & recovery tanks | Ensure drainage +<br>disinfection      | Flow test, biofilm presence control                   |
| Cold room surfaces & floors  | Food detergent + disinfection          | ATP sampling, HACCP checklist                         |
| Storage of chemical products | Separate storage, sealing, ventilation | Safety data sheet, validated implementation plan      |
| Temperature and humidity     | Continuous monitoring with alarm       | Recorders, daily check                                |

## Health Risks for Users

#### Users (operators, storage personnel, etc.)

- Hypothermia, frostbite, and arrhythmias due to prolonged exposure to cold (< -10°C) Impaired alertness, reduced coordination, increased risk of accidents (slips, difficult handling)
- Respiratory or allergic risks due to microbiological contamination of the air (mold, Legionella in HVAC systems)

#### Field Service Technicians

- Direct exposure to pathogens (bacteria, mold) when handling contaminated coils or filters
- Contact with disinfectant chemicals or harmful refrigerant leaks
- Physical and thermal fatigue, affecting concentration and increasing the risk of injury

Conclusion : Prevention relies on appropriate PPE, effective ventilation, training, and regular maintenance.

# Key international standards in cold & HVAC hygiene

- VDI 6022 (=): European standard for the hygiene of HVAC systems (design, inspection, cleaning).
- □ AIRAH (ﷺ) : Australian guide for the assessment and cleaning of HVAC components.
- □ AHRI (): 100+ standards on the performance, hygiene, and safety of HVACR systems.
- □ Hygienic By Design : Hygienic design of equipment to prevent contamination.
- EN 12830, 13485, 13486 : Measuring instruments and recorders for the cold chain.
   ISO 23953 / ex-NF EN 441 : Requirements for refrigerated display cases.
- Codex Alimentarius : Worldwide recommendations on food safety in refrigerated conditions.
- □ ISO 22000 : Food safety management including the cold chain.



#### African specificities



Refrigerants represent 23% of GHG emissionsWEEE in West Africa reaches 500,000 tonnes per year

# Case study: Dakar Hospital

Problem: Legionnaires' disease outbreak linked to the cooling tower.

- Solution: Shock cleaning + IoT monitoring sensors.
- Result: 0 cases in 18 months

#### Definition and issues



- Electrical, thermal, chemical (refrigerants), and mechanical (rotation, pressure) risks.
- □ Falls from height during installation or maintenance.
- Inhalation of toxic fluids (e.g., ammonia, HFCs).
- Allergen or infection risks (dirty pipes, bacteria such as Legionella).

#### Chemical risks

#### Refrigerants

Safety

- HFCs, HCFCs, HFOs, hydrocarbons (R290, R600a), ammonia (R717)
- Toxic inhalation, asphyxiation, risk of explosion or fire Lubricating oils
- May contain irritating or harmful additives
- Risks in case of prolonged contact or projection
- Cleaning or disinfecting products
  - Aerosols, solvents, acids or alkalis
- Inhalation, chemical burns, allergic reactions Corrosion and degradation of materials
- Formation of toxic secondary compounds (oxides, acids) Accidental leaks or releases
- Risks of acute or chronic exposure for workers
- Contamination of indoor air and the environment



#### Technical risks

Safety



| Technical Risk                           | Common Causes                                                                    | Possible Consequences                                    |
|------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|
| Refrigerant leak                         | Poor crimping, corrosion, vibration, shock                                       | Performance loss, pollution, freezing, fire              |
| Overheating / Overpressure               | Ventilation failure, blockage, faulty sensor                                     | Compressor damage, explosion                             |
| Electrical insulation failure            | Humidity, insulation wear, poor grounding                                        | Short circuit, electric shock, fire                      |
| Poor sizing / installation               | Calculation errors, non-<br>compliance with standards (DTU),<br>no thermal study | Malfunction, overconsumption, discomfort, non-compliance |
| Ventilation / air circulation<br>failure | Obstruction, poor grille positioning, flow imbalance                             | Poor air quality, condensation, mold, discomfort         |
| Unsafe maintenance and lifting           | Lack of procedures, inappropriate equipment, lack of training                    | Falls, serious injuries, equipment<br>damage             |



# Real Accident 1: Ammonia Leak (Abidjan, 2022)

- Context :
  - Fish factory, corroded valve.
- Sequence :
  - Undetected leak  $\rightarrow$  3 technicians exposed without PPE.
  - Death from pulmonary edema (1), chemical burns (2).
- Causes :
  - Lack of detectorsPreventive maintenance not performed.



### Real Accident 2: Fire (Johannesburg, 2021)



- Safety
- Context: Shopping center, overloaded HVAC compressor.
   Sequence:
  - Short circuit  $\rightarrow$  Fire in the ducts.
  - Evacuation of 300 people, 2 seriously injured.
  - □ Causes: Faulty wiring, lack of suitable fire extinguishers.



# Real Accident 3: Asphyxiation (Accra, 2023)



- □ Context: Cold storage (-30°C), CO<sub>2</sub> leak.
- Sequence:
- Technician intervened alone  $\rightarrow$  Respiratory distress  $\rightarrow$  Death.
- Causes: Isolated work procedure not followed, gas detector missing.



#### Preventive measures

#### □ Technical and human prevention:

- Suitable PPE: gloves, goggles, masks, safety shoes
- Detection: gas, leaks, pressure, temperatureT
- raining & certification: electricity, fluid handling
- Regular maintenance: ducts, filters, refrigeration units
- Safe handling: fluid recovery, ventilation, storage

#### □ Regulatory and environmental prevention:

- Compliance with standards: EN 378, ISO 5149, VDI 6022
- Waste management: used fluids, filters, oils
- Leakage checks, maintenance log
- Replacement of high-GWP fluids (HFC  $\rightarrow$  R32, R290)



# Safety

#### International standards

Safety

ISO 5149 (refrigeration systems safety), NFPA 70 (electricity).
 African regulations



| Country      | Status of HVACR safety regulations/standardization                                                                                                                                                                                                                                                                                  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tunisia      | <ul> <li>Strict enforcement of the EU F-gas regulation. Mandatory training for technicians</li> <li>.Periodic inspections of pressure equipment and electrical installations.</li> <li>Regular inspections and penalties.</li> <li>Difficulties with enforcement in rural areas.</li> </ul>                                         |
| Ivory Coast  | <ul> <li>Gradual adoption of IEC and AFNOR standards.</li> <li>Enhanced electrical safety.</li> <li>Periodic equipment inspections.</li> <li>Training focused on chemical and mechanical risks.</li> <li>National inventory of planned installations</li> <li>.Limited enforcement and sanctions in the informal sector.</li> </ul> |
| South Africa | <ul> <li>Robust and comprehensive SANS standards.</li> <li>Mandatory technician certification.</li> <li>Regular facility inspections.</li> <li>Ongoing awareness campaigns.</li> <li>Leading model in Africa for HVACR safety.</li> </ul>                                                                                           |



#### Definition and impacts

Refrigerants: R404A (GWP\* = 3,922), R32 (GWP = 675).
 Energy consumption: 40% in HVAC in the tertiary sector (Africa).
 GWP = Global Warming Potential





#### Green technologies



Natural fluids: NH<sub>3</sub> (GWP=0), CO<sub>2</sub> (GWP=1), hydrocarbons.
 Heat recovery: Efficiency +35%.

Les fluides frigorigènes ont un indicateur pour mesurer leur impact sur l'effet de serre : le PRG (Pouvoir de Réchauffement Global). Plus le PRG est faible, plus l'impact sur l'environnement est limité.



Quatrième Rapport d'évaluation du GIEC.

#### Case study: Solar cold chain (Senegal)

- □ Solution: Solar CO<sub>2</sub>-powered cold rooms for small producers.
- Results:
  - GHG reduction: 30%.
  - Food losses: -25%.

#### International standards

Montreal Protocol, Kigali Amendment (HFC reduction).

## African initiatives

| Country      | HVAC Standards and Regulations                                      | Main objectives                                           |
|--------------|---------------------------------------------------------------------|-----------------------------------------------------------|
| Rwanda       | MEPS, labeling, technician certification                            | Reduce HFC imports, train technicians                     |
| Tunisia      | Minimum Energy Performance Standards (MEPS) & labeling requirements | Energy saving, selection of high-<br>performance products |
| South Africa | SANS 941, SANS 10147, HCFC-Kigali plan                              | Safety, maintenance, reduction of harmful substances      |
| Sahel        | Adoption Kigali, HFC-free pilot projects                            | Regional harmonization, technical strengthening           |



# Integrated management tools



- Systems : ISO 14001 (environment), ISO 45001 (safety).
- Software : Electronic records management, combined audits.

#### African Perspective

- Climate :
- Heat stress  $\rightarrow$  HVAC demand +60% by 2050 (World Bank).
- Infrastructures :
  - 60% of rural areas without electricity.
  - Failing cold chain  $\rightarrow$  Food losses > 40% (FAO).







#### Accidents in Africa

- 70% of accidents are linked to obsolete imported equipment.
- Chronic underreporting (lack of reporting systems).
- □ Key factors:
  - Lack of training, informality, corruption.



# Case Study: ColdHubs Project (Nigeria)

- Solution: Solar-powered cold rooms in containers (propane).
- □ HSE Results:
  - H: Reduction in foodborne illnesses (-35%),
  - S: 0 accidents in 3 years (continuing training),
  - $\circ$  E: 0 CO<sub>2</sub> emissions.





### Action levers

- □ Technical: Develop solar cooling and natural fluids.
- Regulatory: Harmonize standards through ECOWAS or the AU.
- **Training:** Create regional certification centers.

#### Strategic recommendations

- □ Priority 1 : Integrate HSE into public tenders.
  - Priority 2 : Subsidies for natural fluids.
- □ Priority 3 : North-South partnerships for technology transfer.

#### Summary conclusion

In Africa, HSE in refrigeration/HVAC systems is a triple opportunity:

**Health:** Reduce air- and food-related illnesses

Economic: Avoid losses (accidents, energy, food)

**Ecological:** Move toward low-carbon technologies

#### General HSE recommendations – All profiles

#### **Hygiene:**

- Keep surfaces and tools clean
- Avoid dust and moisture
- Wash hands regularly
- Check filters and seals
- □ Safety:
  - Comply with instructions
  - Wear appropriate
  - PPEFirst aid training
  - Identify risks (fluid, electrical)
- **Environment**:
  - Zero fluid discharge
  - Waste sorting
  - Energy-saving practices





#### □ Before installation:

Analyze the site Prepare tools Store properly

#### **During**:

• Ergonomic postures

• Protect the site

• Avoid temporary wiring

• After:

Check for leaks Clean the area Compliant labeling

#### For maintenance technicians

**Hygiene** :

- Clean filters and heat exchangers
- Remove mold
- Disinfect tools

□ Safety:

- Pressure/temperature control
- Wear detection
- No opening under pressure
- Test safety devices

#### • Environment:

- Recover fluids Secure storage
- Avoid waste



#### For End Users – Essential Tips

Hygiene :

- Regular cleaning of the grilles
- Do not obstruct the units
- Ventilate the premises
- □ Safety:
  - Do not handle in case of an anomaly
    Turn off the power before intervention
    Call a certified professional
- Environment:
  - Low GWP equipment
    Compliance with maintenance
    Optimized temperatures



#### HSE culture and collective responsibility

- □ Continuously train in best practices
- **D**isplay visible instructions
- □ Report incidents
- □ Regularly audit installations

#### Conclusion

A good HVACR professional = safety, performance, ecology



# " Investing in HSE means building a resilient, competitive and humane refrigeration industry."



